Nonlinear System Identification Using Radial Basis Function-based Signal-dependent Arx Model

نویسندگان

  • H. Peng
  • K. Oda
چکیده

A smooth nonlinear system identification method without resorting to on-line parameter estimation is presented. Based on the radial basis function, a signal-dependent ARX (RBF-ARX) model is established to describe the nonlinear system dynamics. Especially, a new structured nonlinear parameter optimization algorithm based on the Levenberg-Marquardt algorithm and the least squares method is proposed for estimating the parameters of the nonlinear model. Copyright © 2001 IFAC

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Quasi-ARX Model for Multivariable Decoupling Control of Nonlinear MIMO System

This paper proposes a multiinput and multioutput MIMO quasi-autoregressive eXogenous ARX model and amultivariable-decoupling proportional integral differential PID controller for MIMO nonlinear systems based on the proposed model. The proposed MIMO quasi-ARX model improves the performance of ordinary quasi-ARX model. The proposed controller consists of a traditional PID controller with a decoup...

متن کامل

Study on Identification of Nonlinear Systems Using Quasi-ARX Models

System identification can be used to construct a model to represent a given system, and it plays an important role in system analysis, control and prediction. From the view of application, conventional nonlinear black-box models are not good since an easy-to-use model is to interpret properties of the nonlinear process, rather than treated as vehicles for adjusting the fit to the data. Therefor...

متن کامل

Orthonormal Basis and Radial Basis Functions in Modeling and Identification of Nonlinear Block-Oriented Systems

Nonlinear block-oriented systems, including the Hammerstein, Wiener and feedbacknonlinear systems have attracted considerable research interest both from the industrial and academic environments (Bai, 1998), (Greblicki, 1989), (Latawiec, 2004), (Latawiec et al., 2003), (Latawiec et al., 2004), (Pearson & Pottman, 2000). It is well known that orthonormal basis functions (OBF) (Bokor et al., 1999...

متن کامل

Nonlinear system modeling and robust predictive control based on RBF-ARX model

An integrated modeling and robust model predictive control (MPC) approach is proposed for a class of nonlinear systems with unknown steady state. First, the nonlinear system is identified off-line by RBF-ARX model possessing linear ARX model structure and state-dependent Gaussian RBF neural network type coefficients. On the basis of the RBF-ARX model, a combination of a local linearization mode...

متن کامل

Rbf-arx Model-based Robust Mpc for Nonlinear Systems

An integrated modeling and robust model predictive control (MPC) approach is proposed for a class of nonlinear systems. First, the nonlinear system is identified off-line by a RBF-ARX model possessing linear ARX model structure and state-dependent Gaussian RBF neural network type coefficients. On the basis of the RBF-ARX model, a combination of a local linearization model and a polytopic uncert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002